| 
    STARS-H
    
   Software for Testing Accuracy, Reliability and  Scalability of Hierarchical computations 
   | 
 
Set of kernels for spatial statistics problems. More...
Functions | |
| void | starsh_ssdata_block_exp_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_parsimonious_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_parsimonious_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_parsimonious2_kernel_2d_simd_gcd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_parsimonious2_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for -dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_nd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_nd_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_1d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_1d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_2d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_3d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_3d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_4d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_exp_kernel_4d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Exponential kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_nd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_nd_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_1d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_1d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_2d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_3d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_3d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_4d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_sqrexp_kernel_4d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Square exponential kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_nd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_nd_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_1d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_1d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_2d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_3d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_3d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_4d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern_kernel_4d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_nd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_nd_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for n-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_1d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_1d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 1-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_2d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_2d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 2-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_3d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_3d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 3-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_4d (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 4-dimensional spatial statistics problem.  More... | |
| void | starsh_ssdata_block_matern2_kernel_4d_simd (int nrows, int ncols, STARSH_int *irow, STARSH_int *icol, void *row_data, void *col_data, void *result, int ld) | 
| Matérn kernel for 4-dimensional spatial statistics problem.  More... | |
Set of kernels for spatial statistics problems.
Click on functions to view implemented equations.
| void starsh_ssdata_block_exp_kernel_1d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_1d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_2d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points, measured by arc on sphere, and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_3d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_3d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_4d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_4d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_nd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_exp_kernel_nd_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Exponential kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{r_{ij}}{\beta}} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_1d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_1d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_2d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_3d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_3d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_4d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_4d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_nd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern2_kernel_nd_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_1d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_1d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_2d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_3d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_3d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_4d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_4d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_nd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_matern_kernel_nd_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right)^{\nu} K_{\nu} \left( \sqrt{2 \nu} \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_parsimonious2_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_parsimonious2_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_parsimonious_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
 where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function 
 
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_parsimonious_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Matérn kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{r_{ij}} {\beta} \right)^{\nu} K_{\nu} \left( \frac{r_{ij}}{\beta} \right) + \mu \delta(r_{ij}), \]
where \( \Gamma \) is the Gamma function, \( K_{\nu} \) is the modified Bessel function of the second kind, \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \), smoothing parameter \( \nu \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_1d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_1d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 1-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_2d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_2d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 2-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_2d_simd_gcd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for -dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_3d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_3d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 3-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_4d | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_4d_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for 4-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_nd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  | 
| void starsh_ssdata_block_sqrexp_kernel_nd_simd | ( | int | nrows, | 
| int | ncols, | ||
| STARSH_int * | irow, | ||
| STARSH_int * | icol, | ||
| void * | row_data, | ||
| void * | col_data, | ||
| void * | result, | ||
| int | ld | ||
| ) | 
Square exponential kernel for n-dimensional spatial statistics problem.
Fills matrix \( A \) with values
\[ A_{ij} = \sigma^2 e^{-\frac{1}{2} \left( \frac{r_{ij}}{\beta} \right)^2} + \mu \delta(r_{ij}), \]
where \( \delta \) is the delta function
\[ \delta(x) = \left\{ \begin{array}{ll} 0, & x \ne 0\\ 1, & x = 0 \end{array} \right., \]
 \( r_{ij} \) is a distance between \(i\)-th and \(j\)-th spatial points and variance \( \sigma \), correlation length \( \beta \) and noise \( \mu \) come from row_data (STARSH_ssdata object). No memory is allocated in this function!
Uses SIMD instructions.
| [in] | nrows | Number of rows of \( A \). | 
| [in] | ncols | Number of columns of \( A \). | 
| [in] | irow | Array of row indexes. | 
| [in] | icol | Array of column indexes. | 
| [in] | row_data | Pointer to physical data (STARSH_ssdata object). | 
| [in] | col_data | Pointer to physical data (STARSH_ssdata object). | 
| [out] | result | Pointer to memory of \( A \). | 
| [in] | ld | Leading dimension of result.  |